Skip to contents

All functions

BNLearnScorer()
BNLearnScorer
CalculateAcceptanceRates()
Calculate acceptance rates
CalculateEdgeProbabilities()
Calculate pairwise edge probabilities
CalculateFeatureMean()
Calculate arithmetic mean for a DAG feature
CollectUniqueObjects()
Collect unique objects
CoupledPartitionMCMC() experimental
Coupled Partition MCMC
CreateScorer()
Scorer constructor
DAGtoCPDAG()
Convert DAG to CPDAG
DAGtoPartition()
Convert DAG to partition
DefaultProposal()
Default proposal constructor
FlattenChains()
Flatten chains
GetEmptyDAG()
Get an empty DAG given a set of nodes.
GetIncrementalScoringEdges()
Get incremental edges
GetLowestPairwiseScoringEdges()
Preprocessing for blacklisting Get the lowest pairwise scoring edges.
GetMAP()
Get the maximum a posteriori state
InitCoupledPartition() experimental
Initialise partition state for SampleChains. [Experimental]
InitPartition()
Initialise states for SampleChains. Initialise partition state for SampleChains.
MutilateGraph()
Mutilate graph
PartitionMCMC()
Transition objects. Partition MCMC
PartitiontoDAG()
Sample DAG from partition
PlotConcordance()
Concordance plot
PlotCumulativeMeanTrace()
Plot cumulative mean trace plot.
PlotScoreTrace()
Plot the score trace
PostProcessChains()
Index chains for further analysis [Deprecated]
SampleChains()
Sample chains
SampleEdgeProbabilities()
Sample edge probabilities
SamplePosteriorPredictiveChains()
Draw from a posterior predictive distribution
ScoreDAG()
Score DAG.
ScoreLabelledPartition()
Score labelled partition
UniformlySampleDAG()
Uniformly sample DAG
`[`(<cia_chain>)
Index a cia_chain object
`[`(<cia_chains>)
Index a cia_chains object
`[`(<cia_post_chain>)
Indexing with respect to iterations.
`[`(<cia_post_chains>)
Index a cia_post_chains object with respect to iterations.
`[[`(<cia_chains>)
Index a cia_chains object
`[[`(<cia_post_chains>)
Index a cia_post_chains object.
toBNLearn()
Convert to bnlearn object.
toMatrix()
Convert to adjacency matrix.
togRain()
Convert to a gRain object.